skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Pandeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Avolio, Meghan (Ed.)
  2. Abstract Microbes, similar to plants and animals, exhibit biogeographic patterns. However, in contrast with the considerable knowledge on the island biogeography of higher organisms, we know little about the distribution of microorganisms within and among islands. Here, we explored insular soil bacterial and fungal biogeography and underlying mechanisms, using soil microbiota from a group of land-bridge islands as a model system. Similar to island species-area relationships observed for many macroorganisms, both island-scale bacterial and fungal diversity increased with island area; neither diversity, however, was affected by island isolation. By contrast, bacterial and fungal communities exhibited strikingly different assembly patterns within islands. The loss of bacterial diversity on smaller islands was driven primarily by the systematic decline of diversity within samples, whereas the loss of fungal diversity on smaller islands was driven primarily by the homogenization of community composition among samples. Lower soil moisture limited within-sample bacterial diversity, whereas smaller spatial distances among samples restricted among-sample fungal diversity, on smaller islands. These results indicate that among-island differences in habitat quality generate the bacterial island species-area relationship, whereas within-island dispersal limitation generates the fungal island species-area relationship. Together, our study suggests that different mechanisms underlie similar island biogeography patterns of soil bacteria and fungi. 
    more » « less
  3. Abstract Plant microbiomes are known to influence host fitness and ecosystem functioning, but mechanisms regulating their structure are poorly understood.Here, we explored the assembly mechanisms of leaf epiphytic and endophytic bacterial communities using a subtropical forest biodiversity experiment.Both epiphytic and endophytic bacterial diversity increased as host tree diversity increased. However, the increased epiphytic diversity in more diverse forests was driven by greater epiphytic diversity (i.e. greaterα‐diversity) on individual trees, whereas the increased endophytic diversity in more diverse forests was driven by greater dissimilarity in endophytic composition (i.e. greaterβ‐diversity) among trees. Mechanistically, responses of epiphytes to changes in host diversity were consistent with mass effects, whereas responses of endophytes were consistent with species sorting.Synthesis. These results provided novel experimental evidence that biodiversity declines of plant species will lead to biodiversity declines of plant‐associated microbiomes, but the underlying mechanism may differ between habitats on the plant host. 
    more » « less
  4. Summary The study of islands has made substantial contributions to the development of evolutionary and ecological theory. However, we know little about microbial community assembly on islands. Using soil microbial data collected from 29 lake islands and nearby mainland, we examined the assembly mechanisms of soil bacterial and fungal communities among and within islands. We found that deterministic processes, especially homogeneous selection, tended to be more important in shaping the assembly of soil bacterial communities among islands, while stochastic processes tended to be more important within islands. Moreover, increasing island area increased the importance of homogeneous selection, but reduced the importance of variable selection, for soil bacterial community assembly within islands. By contrast, stochastic processes tended to dominate soil fungal community assembly both among and within islands, with dispersal limitation playing a more important role within than among islands. Our results highlight the scale‐ and taxon‐dependence of insular soil microbial community assembly, suggesting that spatial scale should be explicitly considered when evaluating the influences of habitat fragmentation on soil microbial communities. 
    more » « less
  5. Abstract Anthropogenic environmental changes are known to affect the Earth's ecosystems. However, how these changes influence assembly trajectories of the impacted communities remains a largely open question.In this study, we investigated the effect of elevated nitrogen (N) deposition and increased precipitation on plant taxonomic and phylogenetic β‐diversity in a 9‐year field experiment in the temperate semi‐arid steppe of Inner Mongolia, China.We found that both N and water addition significantly increased taxonomic β‐diversity, whereas N, not water, addition significantly increased phylogenetic β‐diversity. After the differences in local species diversity were controlled using null models, the standard effect size of taxonomic β‐diversity still increased with both N and water addition, whereas water, not N, addition, significantly reduced the standard effect size of phylogenetic β‐diversity. The increased phylogenetic convergence observed in the water addition treatment was associated with colonizing species in each water addition plot being more closely related to species in other replicate plots of the same treatment. Species colonization in this treatment was found to be trait‐based, with leaf nitrogen concentration being the key functional trait.Synthesis.Our analyses demonstrate that anthropogenic environmental changes may affect the assembly trajectories of plant communities at both taxonomic and phylogenetic scales. Our results also suggest that while stochastic processes may cause communities to diverge in species composition, deterministic process could still drive communities to converge in phylogenetic community structure. 
    more » « less